

WPMD2008

Dual P-Channel, -20 V, -4.1A, Power MOSFET

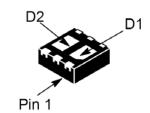
Description

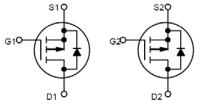
The WPMD2008 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. This device is suitable for use in DC-DC conversion applications. Standard Product WPMD2008 is Pb-free.

Features

V _{(BR)DSS}	R _{DS(on)} MAX
	110m Ω @ -4.5V
-20 V	138m Ω @ -2.5V

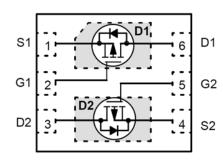
- Lowest RDS(on) Solution in 2x2 mm Package
- 1.8 V RDS(on) Rating for Operation at Low Voltage Gate Drive Logic Level
- Low Profile (< 0.8 mm) for Easy Fit in Thin Environments
- Bidirectional Current Flow with Common Source Configuration
- DFN6 Package Provides Exposed Drain Pad for Excellent Thermal Conduction


Application


- Optimized for Battery and Load Management Applications in Portable Equipment
- Li-Ion Battery Charging and Protection Circuits
- High Power Management in Portable, Battery Powered Products
- High Side Load Switch

Order information

Part Number Part Number


Http://www.sh-willsemi.com

P-CHANNEL MOSFET P-CHANNEL MOSFET

PIN CONNECTIONS

MARKING DIAGRAM

E = Specific Device Code YWW = Date Code

Shipping

WPMD2008-6/TR DFN 6 3000Tape&Reel

Absolute Maximum Ratings (T_A=25°C unless otherwise specified)

Parameter	Symbol			Value	Units
V_{DS}	Drain-Source voltage			-20	V
V_{GS}	Gate-Source Voltage			±8	V
I_{D}	Continuous Steady-State		$T_A=25^{\circ}C$	-3	A
	Drain	Steady-State	$T_A=85^{\circ}C$	-2.3	
	Current ^A	t ≤ 5s	$T_A=25^{\circ}C$	-4.1	
P_{D}	Steady-State		$T_A=25^{\circ}C$	1.45	W
	t ≤ 5 s			2.3	
I_D	Continuous	Steady-State	$T_A=25^{\circ}C$	-2.0	A
	Drain		T _A =85°C	-1.5	
	Current ^B				
P_{D}	Power Dissipation ^B		$T_A=25^{\circ}C$	0.7	W
I_{DM}	Pulse Drain Current B		tp=10us	-20	A
T_{J}	Operating Junction Temperature Range			55 150	°C
Tstg	Storage Temperature Range			-55~150	\mathbb{C}

A: Surface Mounted on FR4 Board using 1 in sq pad size, 2 oz Cu.

Thermal Resistance Ratings

Parameter	Symbol	Max	Unit
Junction to Ambient-Steady State ^C	$ m R_{ heta JA}$	86	°C/W
Junction to Ambient - t≤5 ^C	$R_{ heta JA}$	54	°C/W
Junction to Ambient-Steady State Min Pad ^D	$ m R_{ heta JA}$	175	°C/W

 $C \mbox{:}\ \mbox{Surface Mounted on FR4 Board using 1 in sq pad size, 2 oz Cu.}$

B: Surface Mounted on FR4 Board using the minimum pad size, 2oz Cu.

D: Surface Mounted on FR4 Board using the minimum pad size, 2oz Cu.

Electrical Characteristics
MOSFET ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	$\mathrm{BV}_{\mathrm{DSS}}$	$V_{GS} = 0 \text{ V}, I_D = -250 \text{ uA}$		-20			V
5 G W 1 5 G	I_{DSS}	$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$	$T_J = 25^{\circ}C$			-1	uA
Zero Gate Voltage Drain Current			$T_J = 85^{\circ}C$			-10	
Gate-to-source Leakage Current	I_{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8.0 \text{ V}$				±100	nA
ON CHARACTERISTICS							•
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{GS} = V_{DS}, I_D = -250 \text{ uA}$		-0.4	-0.6	-1	V
	_	$V_{GS} = -4.5V, I_D = -2.0A$			90	110	mΩ
Drain-to-source On-resistance	$R_{DS(on)}$	$V_{GS} = -2.5, I_D = -2.0A$			115	138	
Forward Transconductance	g _{FS}	$V_{DS} = -10 \text{ V}, I_{D} = -$			7.0		S
CHARGES, CAPACITANCES AN		SISTANCE					
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V, } f = 1.0 \text{ MHz, } V_{DS} = -15 \text{ V}$			480		
Output Capacitance	C _{oss}				46		pF
Reverse Transfer Capacitance	C _{RSS}		-		10		- r
Total Gate Charge	Q _{G(TOT)}	$VG_S = -4.5 \text{ V}, V_{DS} = -6 \text{ V}, I_D = -2.8 \text{ A}$			7.2		nC
Threshold Gate Charge	$Q_{G(TH)}$				2.2		
Gate-to-Source Charge	Q_{GS}				2.2		
Gate-to-Drain Charge	Q_{GD}				1.2		
Gate Resistance	R_G				8.8		Ω
SWITCHING CHARACTERIST	[CS						
Turn-On Delay Time	td(ON)				38		ns
Rise Time	tr	$V_{GS} = -4.5 \text{ V}, V_{Ds} = -6.0 \text{ V}, I_D = -2.8 \text{A},$ $R_G = 6 \Omega$			25		1
Turn-Off Delay Time	td(OFF)				43		1
Fall Time	tf				5		1
DRAIN-SOURCE DIODE CHAR	ACTERISTIC	CS			I	I	
Forward Recovery Voltage	V _{SD}	$V_{GS} = 0 \text{ V}, I_S = -1.0 \text{ A}$	T = 25°C		-0.7		V
		$V_{GS} = 0.00$, $I_S = 1.00$ A $I_J = 25$ °C			-0.7		

Typical Performance Characteristics

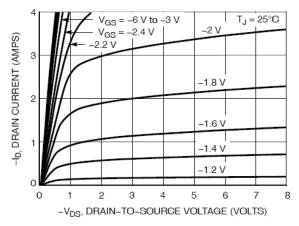


Figure 1. On-Region Characteristics

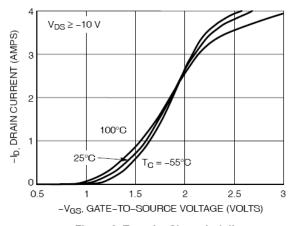


Figure 2. Transfer Characteristics

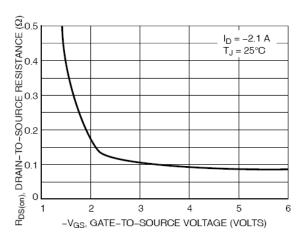


Figure 3. On-Resistance vs. Gate-to-Source Voltage

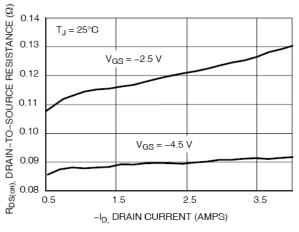


Figure 4. On–Resistance vs. Drain Current and Gate Voltage

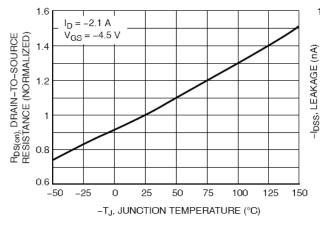


Figure 5. On–Resistance Variation with Temperature

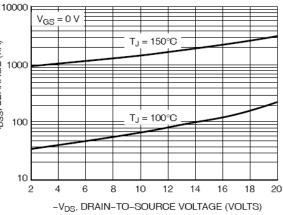


Figure 6. Drain-to-Source Leakage Current vs. Voltage

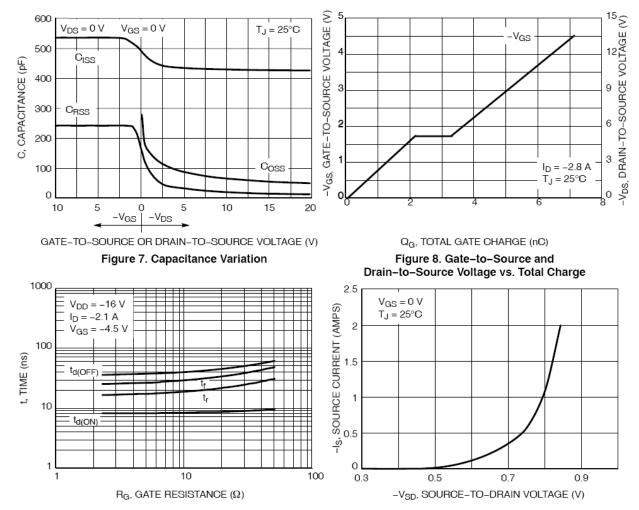
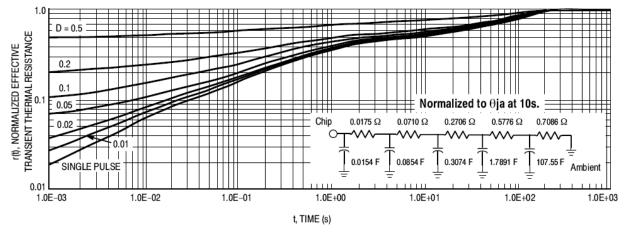
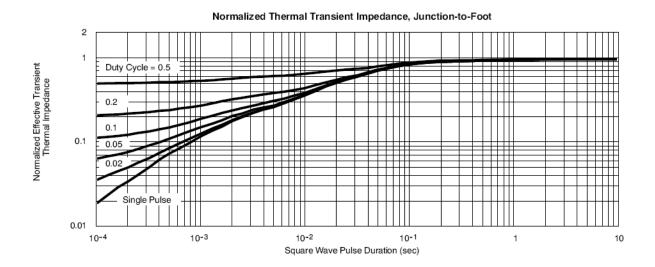
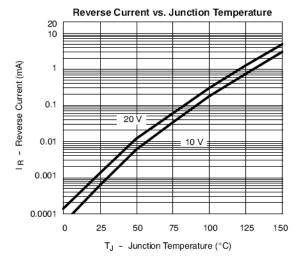
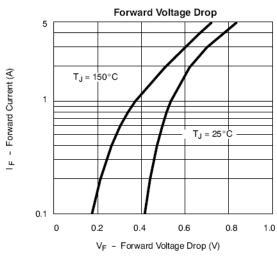
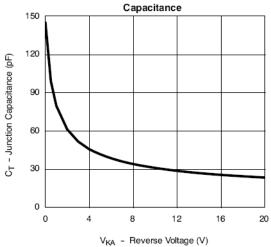


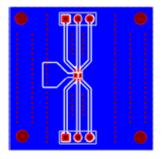
Figure 9. Resistive Switching Time Variation vs. Gate Resistance

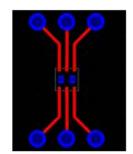
Figure 10. Diode Forward Voltage vs. Current


Figure 11. Thermal Response

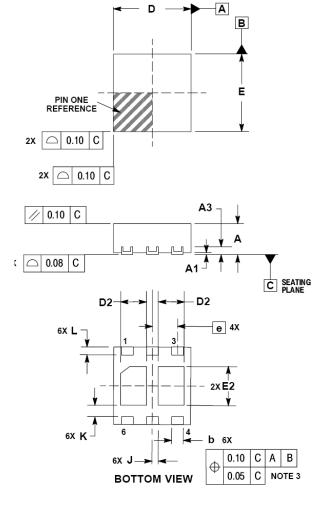

Will Semiconductor Ltd. 5 2015/08/25 – Rev. 1.3





Power Dissipation Characteristics

- 1. The package of WPMD2008 is DFN2x2-6L, surface mounted on FR4 Board using 1 in sq pad size, 2 oz Cu, R θ JA is 84 $^{\circ}$ C/W, surface mounted on FR4 Board using minimum pad size, 2 oz Cu, R θ JA is 175 $^{\circ}$ C /W.
- 2. The power dissipation PD is based on TJ(MAX)=150°C, and the relation between TJ $\,$ and Pd is TJ = Ta + R $\theta JA*$ PD , the maximum power dissipation is determined by R θJA .
- 3. The R θJA is the thermal impedance from junction to ambient, using larger PCB pad size can get smaller R θJA and result in larger maximum power dissipation.


84 °C/W when mounted on a 1 in² pad of 2 oz copper

175 ℃/W when mounted on a minimum pad of 2 oz copper

Packaging Information

DFN 6 Package Outline Dimension

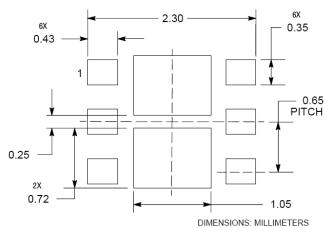
NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. DIMENSION 5 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20mm FROM TERMINAL


 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.70	0.80		
A1	0.00	0.05		
A3	0.20 REF			
b	0.25	0.35		
D	2.00 BSC			
D2	0.57	0.77		
E	2.00 BSC			
E2	0.90	1.10		
е	0.65 BSC			
K	0.25 REF			
L	0.20	0.30		
J	0.15 REF			

STYLE 1: PIN 1. SOURCE1 GATE1 3. DRAIN2 SOURCE2

DRAIN1

SOLDERMASK DEFINED MOUNTING FOOTPRINT*

